Sunday, 22 October 2017

Exponentiellt vägda glidande medelvärde filter


Exploring The Exponentially Weighted Moving Average. Volatility är det vanligaste måttet på risk, men det kommer i flera smaker. I en tidigare artikel visade vi hur man beräknar enkel historisk volatilitet. Läs den här artikeln under Använda volatilitet för att mäta framtida risk Vi använde Google S faktiska aktiekursdata för att beräkna den dagliga volatiliteten baserat på 30 dygns lagerdata I den här artikeln kommer vi att förbättra den enkla volatiliteten och diskutera exponentiellt viktat glidande medelvärde EWMA Historical Vs Implied Volatility Först låt oss sätta denna mätning i en bit Perspektiv Det finns två breda strategier historisk och implicit eller implicit volatilitet Det historiska synsättet förutsätter att förflutet är prolog som vi mäter historia i hopp om att det är förutsägbart Implicerat volatilitet å andra sidan ignorerar historien som löser den volatilitet som indikeras av marknadspriser Det hoppas att marknaden vet bäst och att marknadspriset innehåller, även om det implicit är, en konsensusuppskattning av volatil Ity För relaterad läsning, se Användning och gränser för volatilitet. Om vi ​​fokuserar på bara de tre historiska tillvägagångssätten till vänster ovan, har de två steg gemensamt. Beräkna serien av periodiska avkastningar. Använd en viktningsplan. Först beräknar vi Den periodiska avkastningen Det är vanligtvis en serie av dagliga avkastningar där varje avkastning uttrycks i kontinuerligt förhöjda termer. För varje dag tar vi den naturliga loggen av förhållandet mellan aktiekurserna, dvs priset idag dividerat med priset igår och så vidare. Det ger en Serie av dagliga avkastningar, från ui till du im beroende på hur många dagar m dagar vi mäter. Det tar oss till det andra steget. Det är här de tre metoderna skiljer sig. I den föregående artikeln med hjälp av volatilitet för att mäta framtida risk visade vi det under Ett par acceptabla förenklingar, den enkla variansen är genomsnittsvärdet för den kvadrerade avkastningen. Notera att detta summerar var och en av de periodiska avkastningarna, så delar den totala med antalet dagar eller observationer m Så det är verkligen jus T ett medelvärde av den kvadratiska periodiska avkastningen Sätt på ett annat sätt, varje kvadrerad retur ges lika vikt Så om alfa a är en viktningsfaktor specifikt, en 1 m, ser en enkel varians något ut så här. EWMA förbättras på enkel varians Svaghet i detta tillvägagångssätt är att alla avkastningar tjänar samma vikt igår s mycket nyårig avkastning har inte mer inflytande på variansen än i föregående månad s återvändande Detta problem fixas med hjälp av exponentiellt viktat glidande medelvärdet EWMA, där senare avkastning har större vikt På variansen. Den exponentiellt viktade glidande genomsnittliga EWMA introducerar lambda som kallas utjämningsparametern. Lambda måste vara mindre än en Under detta förhållande, i stället för lika vikter, vägs varje kvadrerad retur med en multiplikator enligt följande. Till exempel, RiskMetrics TM, Ett finansiellt riskhanteringsföretag tenderar att använda en lambda på 0 94, eller 94 I detta fall vägs den första senast kvadrerade periodiska avkastningen med 1-0 94 94 0 6 Den n Ext kvadrerad retur är helt enkelt en lambda-multipel av den tidigare vikten i detta fall 6 multiplicerad med 94 5 64 och den tredje föregående dagen s vikten är lika med 1-0 94 0 94 2 5 30. Det är betydelsen av exponentiell i EWMA varje vikt Är en konstant multiplikator, dvs lambda, som måste vara mindre än en av föregående dags vikt. Detta säkerställer en varians som är viktad eller förspänd mot senare data. Läs mer om Excel-kalkylbladet för Google s Volatilitet Skillnaden mellan helt enkelt volatilitet Och EWMA för Google visas nedan. Enkel volatilitet väger väsentligen varje periodisk avkastning med 0 196, vilket visas i kolumn O vi hade två års daglig aktiekursdata Det är 509 dagliga avkastningar och 1 509 0 196 Men märk att kolumn P tilldelar En vikt av 6, sedan 5 64, sedan 5 3 osv. Det är den enda skillnaden mellan enkel varians och EWMA. Remember När vi summerar hela serien i kolumn Q har vi variansen, vilket är kvadraten av standardavvikelsen If Vi vill ha volatilitet, vi nee D att komma ihåg att ta kvadratroten av den variansen. Vad är skillnaden i den dagliga volatiliteten mellan variansen och EWMA i Google s-fallet Det är viktigt Den enkla variansen gav oss en daglig volatilitet på 2 4 men EWMA gav en daglig volatilitet av Bara 1 4 se kalkylbladet för detaljer Tydligen sänkte Googles volatilitet mer nyligen, därför kan en enkel varians vara konstant hög. För närvarande s Varians är en funktion av Pior Day s Variance Du kommer märka att vi behövde beräkna en lång serie exponentiellt Fallande vikter Vi vann inte matematiken här, men en av de bästa egenskaperna hos EWMA är att hela serien reduceras bekvämt till en rekursiv formel. Recursiv betyder att dagens variansreferenser, dvs. Är en funktion av tidigare dagens varians Du kan Hitta denna formel i kalkylbladet också, och det ger exakt samma resultat som longhandberäkningen. Det står idag att varians under EWMA motsvarar igår s varians viktad av lambda plus igår ss Quared avkastning vägd av en minus lambda Observera hur vi bara lägger till två termer tillsammans igår s viktad varians och gårdagar viktad, kvadrerad retur. Ännu så är lambda vår utjämningsparametrar En högre lambda t. ex. som RiskMetric s 94 indikerar långsammare sönderfall i serien - Relativt sett kommer vi att ha fler datapunkter i serien och de kommer att falla av långsammare. Å andra sidan, om vi reducerar lambda, indikerar vi högre förfall, vikterna faller av snabbare och som direkt Resultatet av det snabba förfallet, färre datapunkter används I kalkylbladet är lambda en inmatning, så att du kan experimentera med sin känslighet. Sammanfattning Volatilitet är den aktuella standardavvikelsen för ett lager och den vanligaste riskvärdet Det är också kvadratroten Av varians Vi kan mäta varians historiskt eller implicit implicit volatilitet Vid mätning historiskt är den enklaste metoden enkel varians Men svagheten med enkel varians är alla avkastningar får samma vikt Åtta Så vi står inför en klassisk avvägning vi vill alltid ha mer data, men ju mer data vi har desto mer är vår beräkning utspädd med avlägsna mindre relevanta data. Det exponentiellt viktade glidande genomsnittet EWMA förbättras på enkel varians genom att tilldela vikter till periodisk avkastning. Genom att göra Detta kan vi båda använda en stor urvalsstorlek, men ge också större vikt till nyare avkastningar. För att se en filmhandledning om detta ämne, besök Bionic Turtle. Moving-genomsnittet och exponentiella utjämningsmodeller. Som ett första steg för att flytta bortom genomsnittliga modeller kan slumpmässiga gångmodeller och linjära trendmodeller, nonseasonal mönster och trender extrapoleras med hjälp av en rörelse - användnings - eller utjämningsmodell Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt lokalt medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognosen för Den närmaste framtiden Detta kan betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-without-drift-modellen Samma strategi kan användas för att uppskatta och extrapolera en lokal trend Ett glidande medel kallas ofta en jämn version av originalet Serier eftersom kortfristig medelvärde har en effekt att utjämna bubblorna i originalserien Genom att justera graden av utjämning av det rörliga genomsnittets bredd kan vi hoppas att vi slår s Ome typ av optimal balans mellan prestanda för medel - och slumpmässiga gångmodeller Den enklaste typen av medelvärdesmodell är det enkla lika viktade rörliga genomsnittet. Prognosen för värdet av Y vid tiden t 1 som är gjord vid tiden t är lika med Enkelt medelvärde av de senaste m-observationerna. Här och någon annanstans kommer jag att använda symbolen Y-hat för att stå för en prognos för tidsserien Y som gjorts så tidigt som möjligt före en given modell. Detta medel är centrerat vid period-m 1 2, vilket innebär att uppskattningen av Den lokala medelvärdet tenderar att ligga bakom det verkliga värdet av det lokala medelvärdet med ca m 1 2 perioder Således säger vi att medeltal för data i det enkla glidande medlet är m 1 2 i förhållande till den period för vilken prognosen beräknas Det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkter i data. Om du till exempel medger de senaste 5 värdena kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m 1, Den enkla glidande SMA-modellen motsvarar den slumpmässiga promenadmodellen utan tillväxt Om m är mycket stor jämförbar med längden av uppskattningsperioden är SMA-modellen lika med medelmodellen. Som med vilken parameter som helst av en prognosmodell är det vanligt Att justera värdet av ki N för att få den bästa passformen till data, det vill säga de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar uppvisa slumpmässiga fluktuationer runt ett långsamt varierande medel. Låt oss försöka passa det med en slumpmässig promenad Modellen, vilket motsvarar ett enkelt glidande medelvärde av 1 term. Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därigenom väljer det mycket av bruset i dataen de slumpmässiga fluktuationerna samt signalen den lokala Medelvärde Om vi ​​istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser. Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga gångmodellen i detta fall Medelåldern för data i detta Prognosen är 3 5 1 2, så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare. Notera att den långsiktiga Termiska prognoser från SMA mod El är en horisontell rak linje, precis som i den slumpmässiga promenadmodellen. Således antar SMA-modellen att det inte finns någon trend i data. Men prognoserna från slumpmässig promenadmodell är helt enkelt lika med det sista observerade värdet, prognoserna från SMA-modellen är lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla rörliga genomsnittet blir inte större, eftersom prognostiseringshorisonten ökar. Detta är uppenbarligen inte korrekt. Tyvärr finns ingen underliggande Statistisk teori som berättar hur förtroendeintervallen borde utvidgas för denna modell. Det är emellertid inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognoserna för längre horisont. Till exempel kan du skapa ett kalkylblad där SMA-modellen Skulle användas för att prognostisera två steg framåt, 3 steg framåt, etc inom det historiska dataprovet. Du kan sedan beräkna provstandardavvikelserna för fel vid varje prognos h Orizon och konstruera sedan konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar av lämplig standardavvikelse. Om vi ​​försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt. Medelåldern är Nu 5 perioder 9 1 2 Om vi ​​tar ett 19-årigt glidande medelvärde, ökar medeltiden till 10. Notera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, även med ett 3-årigt genomsnitt. Modell C, det 5-åriga glidande genomsnittet, ger det lägsta värdet av RMSE med en liten marginal över de tre och 9-siktiga genomsnitten, och Deras andra statistik är nästan identiska Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer lyhördhet eller lite mer jämnhet i prognoserna. Tillbaka till början av sidan. Brons s Exponentiell utjämning exponentiellt vägd Glidande medelvärdet. Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de senaste k-observationerna lika och fullständigt ignorerar alla föregående observationer Intuitivt bör tidigare data diskonteras mer gradvis - till exempel bör den senaste observationen Få lite mer vikt än 2: a senast och 2: a senast bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämning SES-modellen åstadkommer detta. Låt beteckna en utjämningskonstant ett tal mellan 0 och 1 Ett sätt att skriva modellen är att definiera en serie L som representerar den aktuella nivån, dvs det lokala medelvärdet av serien som uppskattat från data upp till idag. Värdet av L vid tid t beräknas rekursivt från sitt eget tidigare värde som detta. Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där kontrollen av det interpolerade värdet är så nära som möjligt Cent observation Prognosen för nästa period är helt enkelt det nuvarande utjämnade värdet. Evivalent kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner I den första versionen är prognosen en interpolering Mellan föregående prognos och tidigare observation. I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel. Erroren vid tidpunkten t I den tredje versionen är prognosen en Exponentiellt viktad dvs diskonterat glidande medelvärde med rabattfaktor 1.Interpoleringsversionen av prognosformuläret är det enklaste att använda om du implementerar modellen på ett kalkylblad som passar i en enda cell och innehåller cellreferenser som pekar på föregående prognos, föregående Observation och cellen där värdet av lagras. Notera att om 1, motsvarar SES-modellen en slumpmässig promenadmodell wit Träväxt Om 0 är SES-modellen ekvivalent med medelmodellen, förutsatt att det första släta värdet sätts lika med medelvärdet Return to top of the page. Den genomsnittliga åldern för data i prognosen för enkel exponentiell utjämning är 1 relativ Till den period för vilken prognosen beräknas. Detta är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie. Därför tenderar den enkla glidande genomsnittliga prognosen att ligga bakom vändpunkter med ca 1 period. Till exempel när 0 5 fördröjningen är 2 perioder när 0 2 fördröjningen är 5 perioder då 0 1 fördröjningen är 10 perioder och så vidare. För en given medelålder, dvs mängden fördröjning, är den enkla exponentiella utjämning SES-prognosen något överlägsen den enkla rörelsen Genomsnittlig SMA-prognos eftersom den lägger relativt större vikt vid den senaste observationen - det är något mer responsivt på förändringar som inträffade under det senaste. Till exempel har en SMA-modell med 9 villkor och en SES-modell med 0 2 båda en genomsnittlig ålder Av 5 för da Ta i sina prognoser, men SES-modellen lägger mer vikt på de senaste 3 värdena än SMA-modellen och samtidigt glömmer det inte helt värderingar som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som är kontinuerligt variabel så att den enkelt kan optimeras genom att använda en solveralgoritm för att minimera medelkvadratfelet. Det optimala värdet av SES-modellen för denna serie visar sig Att vara 0 2961, som visas här. Medelåldern för data i denna prognos är 1 0 2961 3 4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är En horisontell rak linje som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt Men notera att de konfidensintervaller som beräknas av Statgraphics nu avviker på ett rimligt sätt och att de är väsentligt smalare än förtroendeintervallet för rand Om walk-modellen SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell, så den statistiska teorin om ARIMA-modeller ger en bra grund för att beräkna konfidensintervaller för SES-modell SES-modellen är speciellt en ARIMA-modell med en icke-säsongsskillnad, en MA 1-term och ingen konstant term som annars kallas en ARIMA 0,1,1-modell utan konstant MA1-koefficienten i ARIMA-modellen motsvarar Kvantitet 1- i SES-modellen Om du till exempel passar en ARIMA 0,1,1-modell utan konstant till den analyserade serien, visar den uppskattade MA 1-koefficienten sig på 0 7029, vilket är nästan exakt en minus 0 2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend till en SES-modell. Ange härmed bara en ARIMA-modell med en icke-säsongsskillnad och en MA 1-term med en konstant, dvs en ARIMA 0,1,1-modell Med konstant De långsiktiga prognoserna kommer att Då har en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Du kan inte göra detta i samband med säsongsjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant lång Termisk exponentialutveckling till en enkel exponentiell utjämningsmodell med eller utan säsongjustering genom att använda inflationsjusteringsalternativet i prognostiseringsförfarandet. Den lämpliga inflationsprocenttillväxten per period kan uppskattas som lutningskoefficienten i en linjär trendmodell monterad på data i Samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter. Tillbaka till början av sidan. Brett s Linjär dvs dubbel exponentiell utjämning. SMA-modellerna och SES-modellerna antar att det inte finns någon trend av Vilken typ som helst i de data som vanligtvis är ok eller åtminstone inte för dålig för 1-stegs prognoser när data är relativt noi Sy och de kan modifieras för att införliva en konstant linjär trend som visas ovan. Vad sägs om kortsiktiga trender Om en serie visar en varierande tillväxthastighet eller ett cykliskt mönster som står klart mot bruset och om det finns behov av att Prognos mer än 1 år framåt, kan uppskattning av en lokal trend också vara ett problem. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning av LES-modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trenden Modellen är Brown s linjär exponentiell utjämningsmodell, som använder två olika släta serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centren. En mer sofistikerad version av denna modell, Holt s, är Diskuteras nedan. Den algebraiska formen av Browns linjära exponentiella utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men e Kvivalenta former Standardformen för denna modell uttrycks vanligtvis enligt följande. Låt S beteckna den singelformade serien som erhållits genom att applicera enkel exponentiell utjämning till serie Y Det är värdet av S vid period t ges av. Minns att under enkel exponentiell utjämning skulle detta vara prognosen för Y vid period t 1 Låt sedan S beteckna den dubbelsidiga serien som erhållits genom att applicera enkel exponentiell utjämning med samma till serie S. Slutligen är prognosen för Y tk för vilken som helst K 1, ges av. Detta ger e 1 0, dvs lurar lite och låt den första prognosen motsvara den faktiska första observationen och e 2 Y 2 Y 1, varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden Som formel baserad på S och S om den senare startades med användning av S 1 S 1 Y 1 Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Helt s linjär exponentiell utjämning. S LES-modellen beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer en begränsning på datamönstren att den kan passa nivån och trenden får inte variera vid Oberoende priser Holt s LES-modellen tar upp problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst t, som i Brown s-modellen, finns det en uppskattning L t på lokal nivå och en uppskattning T T av den lokala trenden Här beräknas de rekursivt från värdet av Y observerat vid tid t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som tillämpar exponentiell utjämning åt dem separat. Om den beräknade nivån och trenden vid tiden t-1 Är L t 1 och T t-1, då skulle prognosen för Y t som skulle ha gjorts vid tid t-1 vara lika med L t-1 T t 1 När det verkliga värdet observeras, är den uppdaterade uppskattningen av Nivån beräknas rekursivt genom att interpolera mellan Yt och dess prognos, L t-1 T t-1, med vikter av och 1. Förändringen i beräknad nivå, nämligen L t L t 1 kan tolkas som en bullrig mätning av Trenden vid tiden t Den uppdaterade uppskattningen av trenden beräknas därefter rekursivt genom interpolering mellan L T L t 1 och den tidigare uppskattningen av trenden, T t-1 med vikter av och 1.Tolkningen av trendutjämningskonstanten är analog med den för nivåutjämningskonstanten. Modeller med små värden antar att trenden förändras Bara mycket långsamt över tiden medan modeller med större antar att det förändras snabbare En modell med en stor tror att den avlägsna framtiden är väldigt osäker eftersom fel i trendberäkning blir ganska viktiga när prognoser mer än en period framåt. Av sidan. Utjämningskonstanterna och kan beräknas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 0 3048 och 0 008 Det mycket lilla värdet av Innebär att modellen antar mycket liten förändring i trenden från en period till en annan, så i princip försöker denna modell uppskatta en långsiktig trend. I analogi med begreppet medelålder för de data som används vid uppskattning av t Han lokal nivå av serien, den genomsnittliga åldern för de data som används för att uppskatta den lokala trenden är proportionell mot 1, men inte exakt lika med det i det här fallet visar sig vara 1 0 006 125 Detta är inte mycket exakt nummer Eftersom beräkningsnoggrannheten inte är riktigt 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så denna modell är medelvärdesberäknad över ganska mycket historia vid bedömning av trenden. Prognosplotten Nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som uppskattas i SES-trendmodellen. Det uppskattade värdet är nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend , Så det här är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som ska beräkna en lokal trend. Om du eyeball denna plot ser det ut som om den lokala trenden har vänt sig nedåt i slutet av Serie Wh Vid har hänt Parametrarna för denna modell har uppskattats genom att minimera kvadreringsfelet i 1-stegs prognoser, inte längre prognoser, i vilket fall trenden inte gör stor skillnad. Om allt du tittar på är 1 - steg framåtfel, ser du inte den större bilden av trender över säga 10 eller 20 perioder För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den Använder en kortare baslinje för trenduppskattning. Om vi ​​exempelvis väljer att ställa in 0 1, är medelåldern för de data som används för att uppskatta den lokala trenden 10 perioder, vilket innebär att vi medeltar trenden under de senaste 20 perioderna eller så Här är vad prognosplottet ser ut om vi ställer in 0 1 samtidigt som vi håller 0 3 Det ser intuitivt rimligt ut för den här serien, men det är förmodligen farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad med felstatistik Här är En modell jämförelse f Eller de två modellerna som visas ovan samt tre SES-modeller. Det optimala värdet på SES-modellen är ungefär 0 3, men liknande resultat med något mer eller mindre responsivitet erhålls med 0 5 och 0 2. En Holt s linjär expo-utjämning Med alfa 0 3048 och beta 0 008. B Holt s linjär expjäkning med alfa 0 3 och beta 0 1. C Enkel exponentiell utjämning med alfa 0 5. D Enkel exponentiell utjämning med alfa 0 3. E Enkel exponentiell utjämning med alfa 0 2.De statistik är nästan identiska så vi kan verkligen inte göra valet på grundval av 1-stegs prognosfel inom dataprovet. Vi måste falla tillbaka på andra överväganden. Om vi ​​starkt tror att det är vettigt att basera strömmen Trendberäkning om vad som hänt under de senaste 20 perioderna eller så kan vi göra ett fall för LES-modellen med 0 3 och 0 1 Om vi ​​vill vara agnostiker om det finns en lokal trend, kan en av SES-modellerna Vara lättare att förklara och skulle också ge mer medel E-of-the-road prognoser för de kommande 5 eller 10 perioderna Gå tillbaka till toppen av sidan. Vilken typ av trend-extrapolation är bäst horisontellt eller linjärt. Empiriska bevis tyder på att om uppgifterna redan har justerats om det behövs för inflationen, då Det kan vara oskäligt att extrapolera kortsiktiga linjära trender långt in i framtiden. Trenden som uppenbaras idag kan slakta i framtiden på grund av olika orsaker som produktförstöring, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Därför är det enkelt exponentiellt Utjämning utförs ofta bättre utom provet än vad som annars skulle kunna förväntas trots sin naiva horisontella trend-extrapolering. Dämpade trendändringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i dess trendprognoser. Den dämpade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA 1,1,2-modell. Det är möjligt att beräkna konfidensintervall arou Nd långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller Var försiktig att inte alla mjukvaror beräknar konfidensintervaller för dessa modeller korrekt. Bredden på konfidensintervallet beror på jag RMS-felet i modellen, ii typen Av utjämning enkel eller linjär iii värdet s av utjämningskonstanten s och iv antalet framåtprognoser du prognoserar Generellt sprids intervallerna snabbare och blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel Utjämning används Detta avsnitt diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. Gå tillbaka till början av sidan. Exponentialfilter. Den här sidan beskriver exponentiell filtrering, det enklaste och mest populära filtret Detta är en del av avsnittet Filtrering som ingår i en guide Till feldetektering och diagnos. Överblick, tidskonstant och analog ekvivalent. Det enklaste filtret är exponentiellt filter Det har bara en avstämningsparameter annan Än provintervallet Det krävs att endast en variabel lagras - den tidigare utgången. Det är ett IIR-autoregressivt filter. Effekterna av en ingångsförändring sönderfaller exponentialt tills gränserna för bildskärmar eller datorräkningar gömmer sig. I olika discipliner används användning av detta Filtret kallas också exponentiell utjämning I vissa discipliner som investeringsanalys kallas exponentiellt filter en exponentiellt vägt rörlig genomsnittlig EWMA eller bara exponentiell rörlig genomsnittlig EMA. Detta missbrukar den traditionella ARMA-glidande genomsnittliga terminologin för tidsserieanalys, eftersom det finns Ingen inmatningshistorik som används - bara den aktuella ingången. Det är den diskreta tidsekvivalenten för den första ordenslaggen som vanligtvis används i analog modellering av kontinuerliga styrsystem. I elektriska kretsar är ett RC-filterfilter med ett motstånd och en kondensator ett Första ordningsfördröjningen När man betonar analogi med analoga kretsar, är singeljusteringsparametern tidskonstanten, vanligtvis skriven som Små bokstäver grekiska bokstaven Tau I själva verket matchar värdena vid de enskilda provtiderna exakt den ekvivalenta kontinuerliga tidsfördröjningen med samma tidskonstant. Relationen mellan den digitala implementeringen och tidskonstanten visas i ekvationerna nedan. Exponentiella filterekvationer och initialisering. Det exponentiella filtret är en viktad kombination av föregående uppskattningsutgång med den nyaste inmatningsdata, med summan av vikterna lika med 1 så att utmatningen matchar ingången vid steady state. Följande filternotering introducerades redan. ykay k-1 1 - ax k. where xk är den råa ingången vid tiden steg kyk är den filtrerade utgången vid tiden steg ka är en konstant mellan 0 och 1, normalt mellan 0 8 och 0 99 a-1 eller a kallas ibland utjämningskonstanten. For System med ett bestämt tidssteg T mellan proverna, konstanten a beräknas och lagras endast för bekvämlighet när applikationsutvecklaren anger ett nytt värde av den önskade tidskonstanten. Där tau är filten R tidskonstant, i samma tidsenheter som T. For system med dataprovtagning vid oregelbundna intervall måste exponentiell funktion ovan användas med varje tidssteg, där T är tiden sedan föregående prov. Filterutmatningen initieras vanligtvis För att matcha den första ingången. När tidskonstanten närmar sig 0, a går till noll, så det finns ingen filtrering av utgången är lika med den nya ingången. Eftersom tidskonstanten blir väldigt stor, ett tillvägagångssätt 1, så att den nya ingången nästan ignoreras mycket tungt Filtrering. Filtreringens ekvation ovan kan omarrangeras till följande prediktor-korrigeringsekvivalent. Detta formulär gör det mer uppenbart att den rörliga uppskattningsutmatningen av filtret förutses som oförändrad från föregående uppskattning y k-1 plus en korrigeringsperiod baserad på Oväntad innovation - skillnaden mellan den nya ingången xk och förutsägelsen y k-1 Denna form är också resultatet av att det exponentiella filtret härledas som ett enkelt speciellt fall av ett Kalman-filter som är den optimala lösningen för Ett uppskattningsproblem med en viss uppsättning antaganden. Step-svar. Ett sätt att visualisera driften av det exponentiella filtret är att plotta sitt svar över tiden till en stegingång. Det vill säga, med början av filteringången och utgången vid 0, matas inmatningsvärdet Ändras plötsligt till 1 De resulterande värdena anges nedan. I ovanstående diagram divideras tiden med filtertidskonstanten tau så att du lättare kan förutse resultaten under en tidsperiod, för vilket värde som helst av filtertidskonstanten Efter en Tid lika med tidskonstanten stiger filterutgången till 63 21 av sitt slutvärde Efter en tid som motsvarar 2 tidskonstanter, stiger värdet till 86 47 av sitt slutvärde. Utgångarna efter tider motsvarar 3,4 och 5 tid Konstanter är 95 02, 98 17 och 99 33 av slutvärdet. Eftersom filtret är linjärt betyder det att dessa procentandelar kan användas för vilken storleksform av stegändringen, inte bara för värdet av 1 som används här. Även om Stegsvaret i teorin tar ett infinit E-tid, från en praktisk synpunkt, tänk på det exponentiella filtret som 98 till 99 gjort svarande efter en tid som motsvarar 4 till 5 filtertidskonstanter. Variationer på exponentiellt filter. Det finns en variation av exponentiellt filter som kallas ett olinjärt exponentiellt filter Weber, 1980 är avsedd att tungt filtrera buller inom en viss typisk amplitud, men svara sedan snabbare på större förändringar. Copyright 2010 - 2013, Greg Stanley. Share this page.

No comments:

Post a Comment